Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska
نویسندگان
چکیده
[1] The impact to the permafrost during and after wildfire was studied using 11 boreal forest fire sites including two controlled burns. Heat transfer by conduction to the permafrost was not significant during fire. Immediately following fire, ground thermal conductivity may increase 10-fold and the surface albedo can decrease by 50% depending on the extent of burning of the surficial organic soil. The thickness of the remaining organic layer strongly affects permafrost degradation and aggradation. If the organic layer thickness was not reduced during the burn, then the active layer (the layer of soil above permafrost that annually freezes and thaws) did not change after the burn in spite of the surface albedo decrease. Any significant disturbance to the surface organic layer will increase heat flow through the active layer into the permafrost. Approximately 3–5 years after severe disturbance and depending on site conditions, the active layer will increase to a thickness that does not completely refreeze the following winter. This results in formation of a talik (an unfrozen layer below the seasonally frozen soil and above the permafrost). A thawed layer (4.15 m thick) was observed at the 1983 burned site. Model studies suggest that if an organic layer of more than 7–12 cm remains following a wildfire then the thermal impact to the permafrost will be minimal in the boreal forests of Interior Alaska.
منابع مشابه
InSAR detects increase in surface subsidence caused by an Arctic tundra fire
Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increa...
متن کاملEdaphic and microclimatic controls over permafrost response to fire in interior Alaska
Discontinuous permafrost in the North American boreal forest is strongly influenced by the effects of ecological succession on the accumulation of surface organic matter, making permafrost vulnerable to degradation resulting from fire disturbance. To assess factors affecting permafrost degradation after wildfire, we compared vegetation composition and soil properties between recently burned and...
متن کاملCarbon, Trace Gas, and Particulate Emissions from Wildfires in the Boreal Regions of North America
Large wildfires have a considerable impact on the atmospheric concentrations of CO2, CO, O3, NOx, and CH4 across North America. Carbon releases can be as high as 4 to 8 kg C-m per fire event. These emissions significantly affect concentrations far downwind. With funding from NASA, the Joint Fire Science Program, NSF, and the Canadian Government, US and Canadian researchers have been developing ...
متن کاملContrasting soil thermal responses to fire in Alaskan tundra and boreal forest
Recent fire activity throughout Alaska has increased the need to understand postfire impacts on soils and permafrost vulnerability. Our study utilized data and modeling from a permafrost and ecosystem gradient to develop a mechanistic understanding of the shortand long-term impacts of tundra and boreal forest fires on soil thermal dynamics. Fires influenced a variety of factors that altered the...
متن کاملImpacts of fire on non-native plant recruitment in black spruce forests of interior Alaska
Climate change is expected to increase the extent and severity of wildfires throughout the boreal forest. Historically, black spruce (Picea mariana (Mill.) B.S.P.) forests in interior Alaska have been relatively free of non-native species, but the compounding effects of climate change and an altered fire regime could facilitate the expansion of non-native plants. We tested the effects of wildfi...
متن کامل